

Lao People's Democratic Republic

Peace Independence Democracy Unity Prosperity

Prime Minister's Office Water Resources and Environment Administration

No2734 /PMO.WREA Vientiane Province, dated 7 Dec 2009

Agreement on the National Environmental Standards

- Based on the Environmental Protection Law No. 02/99/NA, dated 3 April 1999.
- Based on decree on mandate of Water Resources and Environmental Administration dated 149/PM, dated 10 May 2007.

Minister to Prime Minister's Office, Head of Water Resources and Environment Administration agreed that:

Chapter I General Provisions

Article 1: Objective

This Agreement defines the National Environmental Standards as the basis for environmental monitoring and pollution control on water, soil, air and noise.

Article 2: Definitions

Ambient Environmental Standard means a value which specifies the quality of the ambient environment in terms of concentration or level of a parameter in an environmental media, generally soil, water, air and noise.

Emission Standard means a value which specifies the concentration or level of a parameter as the acceptable emission emitted from a source.

Pollution means chemical, toxic, hazardous, substances, radiation, dust, smoke, noise, smell, vibrations and heat contaminated in the air, water and soil with excessive concentration specified in the National Environmental Standards, which resulted from human activity or nature that may be harmful to human health, animal, biodiversity and other natural environments.

Concentration means the quantity of a chemical substance contaminated in water, soil or air and level of noise calculated according to measurement unit (E.g. weight per volume).

Parameters means indicators used to measure the level of concentration against the standards. The result of measurement could be shown in either numeric or alpha form.

Article 3: Scope of Application

This Agreement applies to any relevant person, enterprise and organization in order to protect the environment and to control pollution in Lao PDR.

Chapter II Type of National Environmental Standards

Article 4: Ambient Standards

4.1 Water Quality Standards includes: drinking water standards, drinking water in covered container standards, groundwater standards and surface water standards.

4.1.1 Drinking Water Quality Standards

A. Bacteriological Parameters

Parameters	Units	Concentration	
Faecal Coliform	MPN/100ml	0	
Total Coliform	MPN/100ml	<2.2	
Entero virus	MPN/100ml	0	

B. Physical -Chemical Parameters

	B. Thysical -Chemical Farameters								
No.	Parameters	Symbol	Unit	Con	centration				
NO.	rarameters	Symbol	Unit	Minimum	Maximum				
1	Aluminum	Al	mg/l	0.1	0.2				
2	Ammonia	NH ₃	mg/l	0.5	1.5				
3	Chloride	Cl ⁻	mg/l	200	250				
4	Copper	Cu	mg/l	1.0	2.0				
5	Iron	Fe	mg/l	0.3	<1				
6	Manganese	Mn	mg/l	0.1	0.5				
7	Sodium	Na	mg/l	200	250				
8	Sulphate	SO ₄ ²⁻	mg/l	200	250				
9	Hydrogen Sulphide	H ₂ S	mg/l	0.05	0.1				
10	Conductivity	Ec	μs/cm	-	<1,000				
11	Total dissolved solids	TDS	mg/l	500	600				
12	Sodium Chloride	NaCl	mg/l	100	300-350				
13	Potential of Hydrogen	pН	-	6.5	8.5				
14	Temperature	T	°C	25	35				
15	Hardness	-	mg/l	50	300				
16	Turbidity	-	NTU	-	<10				
17	Taste and Odour	-	-	-	Acceptable				
18	Colour	-	TCU	-	5				
19	Residual Chloride (if	Cl ₂	mg/l	-	< 0.2				
	Chlorine disinfection is used)		_						

C. Health Significant Chemical Parameters

	C. Hearth Significant Chemical Larameters							
No.	Parameters	Symbol	Unit	Maximum Concentration				
1	Antimony	Sb	mg/l	0.005				
2	Arsenic	As	mg/l	0.01-0.05				
3	Barium	Ba	mg/l	0.7				
4	Boron	В	mg/l	0.50				
5	Cadmium	Cd	mg/l	0.003				
6	Chromium	Cr	mg/l	0.05				

No.	Parameters	Symbol	Unit	Maximum Concentration
7	Cyanide	CN ⁻	mg/l	0.07
8	Fluoride	F-	mg/l	1.5
9	Lead	Pb	mg/l	0.01
10	Mercury	Hg	mg/l	0.001
11	Nitrate	NO-3	mg/l	50
12	Nitrite	NO 2	mg/l	3
13	Selenium	Se	mg/l	0.01

D. Priority Parameters

No.	Parameters	Symbol	Unit	Maximum Concentration
1	Iron	Fe	mg/l	<1
2	Manganese	Mn	mg/l	< 0.5
3	Arsenic	As	mg/l	< 0.05
4	Fluoride	F ⁻	mg/l	<1.5
5	Nitrate	NO ₃	mg/l	50
6	Nitrite	NO ₂	mg/l	3
7	Nitrite Nitrogen	NO ₂ N	mg/l	1
8	Potential of Hydrogen	pН	-	6.5-8.5
9	Coliform	-	MPN/100ml	0
10	Conductivity	Ec	μs/cm	1000
11	Residual Chloride (if	Cl ₂	mg/l	0.2
	Chlorine disinfection is			
	used)			
12	Total Hardness	-	mg/l	<300
13	Turbidity	-	NTU	<10
14	Taste and Odour	-	-	Acceptable

4.1.2 Drinking Water Quality in Covered Container

No.	Parameters	Symbol	Unit	Permitted Concentration
1	A : -	Α	/1	0.01-0.05
1	Arsenic	As	mg/l	
2	Barium	Ba	mg/l	0.7
3	Boron	В	mg/l	0.5
4	Cadmium	Cd	mg/l	0.003
5	Chromium	Cr	mg/l	0.05
6	Copper	Cu	mg/l	2
7	Fluoride	F-	mg/l	1.5
8	Lead	Pb	mg/l	0.01-0.05
9	Manganese	Mn	mg/l	0.5
10	Mercury	Hg	mg/l	0.001
11	Nitrate	NO ₃	mg/l	50
12	Iron	Fe	mg/l	0.3
13	Potential of Hydrogen	pН	-	6.5-8.5
14	Hardness	-	mg/l	100-300

4.1.3 Groundwater Quality Standards

No.	Substances	Symbol	Unit	Standard	Method of	
			Cilit	Value	Measurement	
	tile Organic Compound			ı		
1	Benzene	C ₆ H ₆	mg/l	0.005	-	
2	Carbon Tetrachloride	CCI ₄	mg/l	0.005		
3	1.2-Dichloroethane	CH ₂ CI-	mg/l	0.005		
		CH ₂ CI			-	
4	1.1-Dichloroethylene	CCI ₂ =CH ₂	mg/l	0.007		
5	Cis-1.2-	H H	mg/l	0.070		
	Dichloroethylene	C=C				
	T 1.0	CI CI	/1	0.1	_	
6	Trans-1.2-	CI H	mg/l	0.1		
	Dichloroethylene	C=C			Purge and Trap Gas Chromatography or Purge and Trap Gas	
7	Dichloromethane	H CI CH ₂ CI ₂	mg/l	0.005	Chromatography/ Mass	
8	Ethly benzene	$C_{6}H_{5}$ - $C_{2}H_{5}$	mg/l	0.003	Spectrometry	
9	Styrene	C ₆ H ₅ -C ₂ H ₅ -	mg/l	0.7		
9	Stylene	CH=CH ₂	IIIg/I	0.1		
10	Tetrachloroethylene	CI ₂ C=CCI ₂	mg/l	0.005		
11	Toluene	C ₆ H ₅ -CH ₃	mg/l	1		
12	Trichloroethylene	CI ₂ C=CHCI	mg/l	0.005		
13	1.1.1 Trichloroethane	CI ₃ C-CH ₃	mg/l	0.2		
14	1.1.2 Trichloroethane	CI ₂ CH-	mg/l	0.005	-	
	11112 11101110100011111110	CH ₂ CI	1116/1	0.002		
15	Total Xylenes	o, m, p (CH ₃ -C ₆ H ₄ - CH ₃)	mg/l	10		
II. Hea	vy Metals				1	
1	Cadmium	Cd	mg/l	0.003		
2	Hexavalent Chromium	Cr ⁺⁶	mg/l	0.05	Direct Aspiration/	
3	Copper	Cu	mg/l	1	Absorption Spectrometry	
4	Lead	Pb	mg/l	0.01	or Inductively Coupled	
5	Manganese	Mn	mg/l	0.5	Plasma/Plasma Emission	
6	Nickel	Ni	mg/l	0.02	Spectroscopy	
7	Zinc	Zn	mg/l	5		
8	Arsenic	As	mg/l	0.01	Hydride Generation/	
9	Selenium	Se	mg/l	0.01	Atomic Absorption Spectrometry or Inductively Coupled Plasma/ Plasma Emission Spectroscopy	
10	Mercury	Нд	mg/l	0.001	Cold-Vapour Atomic Absorption Spectrometry/ Plasma Emission Spectroscopy	
	sticides			0.000	T	
1	Chlordane	$C_{10}H_5CI_8$	mg/l	0.0002	Liquid-Liquid Extraction	

No.	Substances	Symbol	Unit	Standard Value	Method of Measurement
2	Dieldrin	C ₁₂ H ₈ CI ₆ O	mg/l	0.00003	Gas Chromatography/
3	Heptachlor	CI ₇	mg/l	0.0004	Mass Spectrometry or
4	Heptachlor Epoxide	-	mg/l	0.0002	Liquid-Liquid Extraction Gas Chromatography
5	DDT	DDT	mg/l	0.002	(Method I)
6	2,4 D	2, 4 D	mg/l	0.03	Liquid-Liquid Extraction
7	Atrazine	C ₈ H ₁₄ CIN ₅	mg/l	0.003	Gas Chromatography
8	Lindane	C ₆ CI ₆	mg/l	0.0002	Liquid-Liquid Extraction Gas Chromatography (Method I)
9	Pentachlorophenol	CI ₅ C ₆ H ₅ OH	mg/l	0.001	Liquid-Liquid Extraction Chromatography or Liquid-Liquid Extraction Gas Chromatography/ Mass Spectrometry
IV. Oth	iers				
1	Benzo (a) pyrene	-	mg/l	0.0002	Liquid-Liquid Extraction Chromatography or Liquid-Liquid Extraction Gas Chromatography/ Mass Spectrometry
2	Cyanide	CN ⁻	mg/l	0.2	Pyridine Barbituric Acid or Colorimetric or Ion Chromatography
3	PCBs	PCB	mg/l	0.0005	Liquid-Liquid Extraction Gas Chromatography (Method II)
4	Vinyl Chloride	CH ₂ =CHCl	mg/l	0.002	Purge and Trap Gas Chromatography or Purge and Trap Gas Chromatography/ Mass Spectrometry

4.1.4 Groundwater Standards for Drinking Purposes

		Ü	•	Permit	ted Standard
Characteristics	Parameters	Symbol	Unit	Value	
				Suitable	Maximum
	1. Colour	-	Platinum-	5	15
			Cobalt (Pt-		
Physical			Co)		
Pilysical	2. Turbidity	-	JTU	5	20
	3. Potential of	pН	-	7.0-8.5	6.5-9.2
	Hydrogen				
	4. Iron	Fe	mg/l	≤0.5	1
	Manganese	Mn	mg/l	≤0.3	0.5
	6. Copper	Cu	mg/l	≤1.0	1.5
	7. Zinc	Zn	mg/l	≤5.0	15
Chemical	8. Sulphate	SO_4^{2-}	mg/l	≤200	250
	9. Chloride	Cl	mg/l	≤250	600
	10. Fluoride	F-	mg/l	≤0.7	1
	11.Nitrate	NO ₃	mg/l	≤15	45
	12. Total	Total	mg/l	≤300	500
	Hardness as	CaCO ₃			

Characteristics	Parameters	Symbol	Unit		ted Standard Value
	CaCO3				
	13.Non-carbo-	Non	mg/l	≤200	250
	nate hardness as	CaCO ₃			
	CaCO3				
	14. Total solids	TS	mg/l	≤600	1,200
	15. Arsenic	As	mg/l	None	0.05
Toxic chemical	16. Cyanide	CN ⁻	mg/l	None	0.1
substances	17. Lead	Pb	mg/l	None	0.05
Substances	18. Mercury	Hg	mg/l	None	0.001
	19. Cadmium	Cd	mg/l	None	0.01
	20. Selenium	Se	mg/l	None	0.01
	21. Coliform	Coliform	MPN/100	<2.2	<2.2
	bacteria		ml		
Bacteria	22. E. coli	E. coli	-	None	None
	bacteria				
	23. Standard	-	Colonies/ml	≤500	-
	plate count				

4.1.5 Surface Water Quality Standards

No	Surface Water Quality Substances	Symbol	Unit	Standard Value	Method of Measurement
1	Colour, Odour and Taste	-	-	N	-
2	Temperature	t	°C	N'	Thermometer
3	Potential of Hydrogen	pН	-	5-9	Electronic pH Meter
4	Dissolved Oxygen	DO	mg/l	6	Azide Modification
5	COD	COD	ml/l	5	Potassium permanganate
6	BOD ₅	BOD ₅	mg/l	1,5	Azide Modification at 20 degree C, 5 days
7	Total Coliform Bacteria	Coliform Bacteria	MPN/100 ml	5000	Multiple Tube
8	Faecal Coliform Bacteria	Faecal Coliform	MPN/ 100 ml	1000	Fermentation
9	Nitrate-Nitrogen	NO ₃ -N	mg/l	< 5.0	Cadmium Reduction
10	Ammonia-Nitrogen	NH ₃ -N	mg/l	0.2	Distillation Nesslerization
11	Phenols	C ₆ H ₃ -OH	mg/l	0.005	Distillation, 4-Amin anti-pyrenne
12	Copper	Cu	mg/l	0.1	
13	Nickel	Ni	mg/l	0.1	
14	Manganese	Mn	mg/l	1.0	A 4 1 - A 1 41
15	Zinc	Zn	mg/l	1.0	Atomic Absorption Direct Aspiration
16	Cadmium	Cd	mg/l	0.005	
17	Chromium, Hexavalent	Cr 6+	mg/l	0.05	
18	Lead	Pb	mg/l	0.05	
19	Mercury	Hg	mg/l	0.002	Atomic Absorption Cold Vapour

No	Substances	Symbol	Unit	Standard Value	Method of Measurement
20	Arsenic	As	mg/l	0.01	Atomic Absorption
2.1	G 11	CD T-	/1	0.005	Direct Aspiration
21	Cyanide	CN ⁻	mg/l	0.005	Pyridine-Barbituric
22	Alpha ¬Radioactive	α	Becquere 1/1	0.1	Counting mashins
23	Beta ¬ Radioactive	β	Becquere 1/1	1.0	Counting machine
24	Total Organochlorine	-	mg/l	0.05	Gas
25	DDT	C ₁₄ H ₉ Cl ₅	mg/l	1.0	Chromatography
26	Alpha -BHC	αBHC	mg/l	0.02	
27	Dieldrin	C ₁₂ H ₈ Cl ₆ O	mg/l	0.1	
28	Aldrin	-	mg/l	0.1	
29	Heptachlor and	-	mg/l	0.2	
	Heptachlor Epoxide				
30	Endrin	-	mg/l	None	

4.2 Soil Quality Standards
4.2.1 Soil Quality Standards for Residential and Agriculture

4.2.1 Soil Quality Standards for Residential and Agriculture						
Substances	Symbol	Unit		Method of		
			Value	Measurement		
		I	1			
	0 0					
CarbonTetrachloride	CCI ₄	mg/kg	89			
1,2 Dichloroethane	CH ₂ CI-	mg/kg	230			
1,1 Dichloroethylene	CCI ₂ =CH ₂	mg/kg	1,700			
Cis 1,2 Dichloroethylene	CHCl=CHCl	mg/kg	57			
Trans-1.2- Dichloroethylene	CHCl=CHCl	mg/kg	520	Gas Chromatography or		
Dichloromethane	CH ₂ CI ₂	mg/kg	28	Gas Chromatography/.		
Ethly benzene	1C2C1C-CH3	mg/kg	630	Mass Spectrometry		
Styrene	C ₆ H ₅ . CH=CH ₂	mg/kg	8.4	(GC/MS) or other methods approved by WREA		
Tetrachloroethylene	C ₂ Cl ₄	mg/kg	210			
Toluene	C ₆ H ₅ -CH ₃	mg/kg	6.5			
Trichloroethylene	CI ₂ C=CHCI	mg/kg	2.5			
1.1.1 Trichloroethane	CI ₃ C-CH ₃	mg/kg	3.5			
1.1.2 Trichloroethane	CI ₂ CH- CH ₂ CI	mg/kg	43			
Total Xylenes	(CH ₃ -C ₆ H ₄ -	mg/kg	63			
leavy Metals	C113)					
	As	mg/kg	3.9	Inductively Coupled		
Cadmium and its compounds	Cd	mg/kg	37	Plasma-Atomic Emission Spectrometry or Inductive- ly Coupled Plasma-Mass Spectrometry or Atomic Absorption, Gaseous Hyd- ride or Atomic Absorption, Borohydride Reduction or		
	Substances Platile Organic Compouration Benzene CarbonTetrachloride 1,2 Dichloroethylene Cis 1,2 Dichloroethylene Trans-1.2- Dichloroethylene Dichloromethane Ethly benzene Styrene Tetrachloroethylene Trichloroethylene Tichloroethylene Toluene Trichloroethylene 1.1.1 Trichloroethane 1.1.2 Trichloroethane Total Xylenes Leavy Metals Arsenic Cadmium and its	Substances Symbol Datile Organic Compound Benzene CarbonTetrachloride 1,2 Dichloroethane Cis 1,2 Cis 1,2 CicleCHCI Dichloroethylene Trans-1.2- Dichloroethylene Dichloromethane CH2CI2 Ethly benzene Styrene Cable CH3-CH4 Tetrachloroethylene Trichloroethylene C6H3- Trichloroethylene C12C=CHCI Toluene Trichloroethylene C2CI4 Toluene C3-CH3- Trichloroethylene C13-C-CH3 Trichloroethane C13-C-CH3 Trichloroethane C13-C-HCI Total Xylenes (CH3-C6H4- CH3) Ceavy Metals Arsenic As Cadmium and its CCI4- CCI4 CCI4 CCI4 CCI4 CCI4 CCI4 CCI	Substances Symbol Unit Datile Organic Compound Benzene C ₆ H ₆ mg/kg CarbonTetrachloride CCI ₄ mg/kg 1,2 Dichloroethane CH ₂ CI-CH ₂ mg/kg Cis 1,2 CHC =CHC1 mg/kg Dichloroethylene CHC =CHC1 mg/kg Dichloroethylene Dichloroethylene mg/kg Dichloromethane CH ₂ CI ₂ mg/kg mg/kg Ethly benzene IC ₂ CIC-CH ₃ mg/kg mg/kg Styrene C ₆ H ₃ -CH ₂ mg/kg mg/kg Toluene C ₆ H ₃ -CH ₃ mg/kg mg/kg Trichloroethylene CI ₂ C=CHCI mg/kg 1.1.1 Trichloroethane CI ₂ C-CHCI mg/kg 1.1.2 Trichloroethane CI ₂ C-CHCI mg/kg CH ₂ CI Total Xylenes (CH ₃ -C ₆ H ₄ -CH ₃) Ceavy Metals As mg/kg Cadmium and its Cd mg/kg	Substances Symbol Unit Standard Value Datile Organic Compound Benzene C ₆ H ₆ mg/kg 0.5 CarbonTetrachloride CCI ₄ mg/kg 89 1,2 Dichloroethane CH ₂ CI-CH ₂ cr. mg/kg 230 CH ₂ CI mg/kg 230 CH ₂ CI mg/kg 230 Cis 1,2 CHCl=CHCI mg/kg 57 Dichloroethylene Dichloroethylene mg/kg 57 Dichloroethylene CHCl=CHCI mg/kg 520 Dichloroethylene CH ₂ CI ₂ mg/kg 630 Styrene C ₆ H ₅ -CH ₃ mg/kg 630 Styrene C ₆ H ₅ -CH ₃ mg/kg 8.4 Tetrachloroethylene C ₂ Cl ₄ mg/kg 6.5 Trichloroethylene C ₁ C-CHCI mg/kg 2.5 1.1.1 Trichloroethane C ₁ C-CHCI mg/kg 3.5 1.1.2 Trichloroethane C ₁ C-CHCI mg/kg 43 CH ₂ CI mg/kg 63		

No.	Substances	Symbol	Unit	Standard Value	Method of Measurement
					by WREA
3	Hexavalent Chromium	Cr ⁺⁶	mg/kg	300	Coprecipitation or Colori- metric or Chelation/ Extraction or other Methods Approved by WREA
4	Lead	Pb	mg/kg	400	Inductively Coupled Plasma-Atomic Emission
5	Manganese and its compounds	Mn	mg/kg	1,800	Spectrometry or Inductive- ly Coupled Plasma-Mass Spectrometry or Atomic Absorption, Direct Aspira- tion or Atomic Absorption, Furnace Techniques or other Methods Approved by WREA
6	Mercury and its compounds	Hg	mg/kg	23	Cold-Vapour Technique or other Methods Approved by WREA
7	Nickel, soluble salts	Ni	mg/kg	1,600	Inductively Coupled Plasma-Atomic Emission
8	Selenium	Se	mg/kg	390	Spectrometry or Inductive- ly Coupled Plasma-Mass Spectrometry or Atomic Absorption, Direct Aspira- tion or Atomic Absorption, Furnace Techniques or other Methods Approved by WREA
III.	Pesticides				
1	Atrazine	C ₈ H ₁₄ CIN ₅	mg/kg	22	Gas Chromatography or other Methods Approved by WREA
2	Chlordane	-	mg/kg	16	Gas Chromatography/ Mass Spectrometry (GC/MS) or other Methods Approved by WREA
3	2,4 D	-	mg/kg	690	Gas Chromatography or High Performance Liquid Chromatography/ Thermal Extraction/ Gas Chromato- graphy/Mass Spectrometry (TE/GC/MS) or other Me- thods Approved by WREA
4	DDT	DDT	mg/kg	17	
5	Dieldrin	C ₁₂ H ₈ Cl ₆ O	mg/kg	0.3	Gas Chromatography or Gas Chromatography/
6	Heptachlor	Cl ₇	mg/kg	1.1	Mass Spectrometry (GC/MS) or other Methods Approved by WREA
7	Heptachlor Epoxide	-	mg/kg	0.5	
8	Lindane	-	mg/kg	4.4	
	Others	T		0.6	0 0 1 /
1	Benzo(a)pyrene	-	mg/kg	0.6	Gas Chromatography/ Mass Spectrometry (GC/MS) or Thermal Extraction Gas Chromato- graphy/ Mass Spectrome-

7

No.	Substances	Symbol	Unit	Standard Value	Method of Measurement
					try (TE/GC/MS)Chromato- graphy/ Fourier Transform Infrared (GC/FT-IR) Spec- trometry or other Methods Approved by WREA
2	Cyanide and its compounds	CN ⁻	mg/kg	11	Total and Amenable Cyanide: Distillation, or Total Amenable Cyanide (Automated Colorimetric, with off-line Distillation), or Cyanide Extraction Procedure for Solids and Oils or other Methods Approved by WREA
3	PCBs	-	mg/kg	2.2	Gas Chromatography or other Methods Approved by WREA
4	Vinyl Chloride		mg/kg	1.5	Gas Chromatography or Gas Chromatography/ Mass Spectrometry (GC/MS) or other Methods Approved by WREA

A. Soil Quality Standards for Other Purposes

A. 50	. Soil Quality Standards for Other Purposes								
No.	Substances	Symbol	Unit	Standard Value	Method of Measurement				
I. Vo	olatile Organic Compo								
1	1,1 Dichloroethylene	CCl ₂ =CH ₂	mg/kg	0.5					
2	Dichloromethane	CH ₂ Cl ₂	mg/kg	89					
3	Ethly benzene	C_6H_5 – C_2H_5	mg/kg	230					
4	Styrene	C ₆ H ₅ - CH=CH ₂	mg/kg	1,700					
5	Tetrachloroethylene	Cl ₂ C=CCl ₂	mg/kg	57					
6	Toluene	C ₆ H ₅ –CH ₃	mg/kg	520					
7	Trichloroethylene	Cl ₂ C=CHCl	mg/kg	28					
8	1,1,1 Trichloroethane	Cl ₂ ClC-CH ₃	mg/kg	630	Gas Chromatography or Gas Chromatography/ Mass				
9	1,1,2 Trichloroethane	Cl ₂ CH- CH ₂ Cl	mg/kg	8.4	Spectrometry (GC/MS) or other methods approved by				
10	Total Xylenes	o, m, p (CH ₃ - C ₆ H ₄ CH ₃)	mg/kg	210	WREA				
11	Benzene	C ₆ H ₆	mg/kg	6.5					
12	Carbon Tetrachloride	CCl ₄	mg/kg	2.5					
13	1,2 Dichloroethane	CH ₂ Cl- CHCl	mg/kg	3.5					
14	Cis 1,2 Dichloroethylene	C=C H	mg/kg	43					

No.	Substances	Symbol	Unit	Standard	Method of
110.	Substances	Symbol	Cilit	Value	Measurement
15	Trans 1,2 Dichloroethylene	Cl Cl H	mg/kg	63	
II. H	leavy Metals				
1	Arsenic	As	mg/kg	27	Inductively Coupled Plasma- Atomic Emission
2	Cadmium and its compounds	Cd	mg/kg	810	Atomic Emission Spectrometry or Inductively Coupled Plasma-Mass Spectrometry or Atomic Absorption Furnace Technique or Atomic
3	Hexavalent Chromium	Cr ⁺⁶	mg/kg	640	Co precipitation or Colorimetric or Chelation/Extraction or other Methods Approved by WREA
4	Lead	Pb	mg/kg	750	Inductively Coupled Plasma- Atomic Emission Spectrometry or Inductively
5	Manganese and its compounds	Mn	mg/kg	32,000	Coupled Plasma-Mass Spectrometry or Atomic Absorption, Direct Aspiration or Atomic Absorption, Furnace Techniques or other Methods Approved by WREA
6	Mercury and its compounds	Hg	mg/kg	610	Cold-Vapour Technique or other Methods Approved by WREA
7	Nickel, soluble salts	Ni	mg/kg	41,000	Inductively Coupled Plasma- Atomic Emission Spectrometry or Inductively Coupled Plasma-Mass Spectrometry or Atomic Absorption, Direct Aspiration or Atomic Absorption, Furnace Techniques or other Methods Approved by WREA
8	Selenium	Se	mg/kg	10,000	Inductivity Coupled Plasma- Atomic Emission Spectrometry or Atomic Absorption, Furnace Technique or Atomic Absorption, Gaseous Hydride or Atomic Absorption, Borohydride Reduction or other Methods Approved by WREA
III. I	Pesticides				
1	Atrazine	C ₈ H ₁₄ CIN ₅	mg/kg	110	Gas Chromatography or other Methods Approved by WREA
2	Chlordane	C ₁₀ H ₅ Cl ₈	mg/kg	110	Gas Chromatography/ Mass Spectrometry (GC/MS) or other Methods Approved by

No.	Substances	Symbol	Unit	Standard Value	Method of Measurement
					WREA
3	2,4 D	2.4D	mg/kg	12,000	Gas Chromatography or High Performance Liquid Chromatography/Thermal Extraction/ Gas Chroma- tography/ Mass Spectrometry (TE/GC/ MS) or other Methods Approved by WREA
4	DDT	DDT	mg/kg	120	Coo Chaomata manhay an Coo
5	Dieldrin	C ₁₂ H ₈ Cl ₆ O	mg/kg	1.5	Gas Chromatography or Gas Chromatography/ Mass
6	Heptachlor	Cl ₇	mg/kg	5.5	Spectrometry (GC/MS) or
7	Heptachlor Epoxide	C ₁₀ H ₅ Cl ₇ O	mg/kg	2.7	other Methods Approved by WREA
8	Lindane	C ₆ Cl ₆	mg/kg	29	
9	Pentachlorophenol	Cl ₅ C ₆ H ₅ OH	mg/kg	110	Gas Chromatography or Gas Chromatography/ Mass Spectrometry (GC/MS) or Gas Chromatography/ Fourier Transform Infrared (GC/FT- IR) Spectrometry or other Methods Approved by WREA
IV. (Others				
1	Benzo(a)pyrene	-	mg/kg	2.9	Gas Chromatography/ Mass Spectrometry (GC/MS) or Thermal Extraction/ Gas Chromatography/ Mass Spectrometry (TE/GC/MS) or Gas Chromatography/ Fourier Transform Infrared (GC/FT- IR) Spectrometry or other Methods Approved by WREA
2	Cyanide and its compounds	CN ⁻	mg/kg	11	Total and Amenable Cyanide: Distillation, or Total Amenable Cyanide (Automated Colorimetric, with off-line Distillation), or Cyanide Extraction Procedure for Solids and Oils or other Methods Approved by WREA
3	PCBs (C ₁₂ H ₇ Cl ₃)	PCBs (C ₁₂ H ₇ Cl ₃)	mg/kg	10	Gas Chromatography or other Methods Approved by WREA
4	Vinyl Chloride	CH ₂ =CHCl	mg/kg	8.3	Purge and Trap Gas Chromatography or Purge and Trap Gas Chromatography Mass Spectrometry

4.3 Ambient Air Quality Standard

4.5 Allibie	nt An Qua	iniy Stai	ıuaı u				1
		4	Average '	Time Un	it: mg/m3	3	
Parameters	Symbol		Hours		1	1	Method of
		1 hr	8 hr	24 hr	month	year	Measurement
Carbon monoxide	СО	30	10.26	-	-	-	Non dispersive infrared detection
Nitrogen dioxide	NO ₂	0.32	-	-	-	-	Chemilumine scene method
Sulphur dioxide	SO ₂	0.78	-	0.30	-	0.10	UV Fluorescence (1hr, 24hr, 1yr) or Pararosaniline (1hr,4hr)
Total Suspended Particulate	TSP	-	-	0.33	-	0.10	Gravimetric
Particulate Matter less than 10 microns	PM-10	-	-	0.12	-	0.05	Gravimetric or Beta Ray or Taper Element Oscillating Microbalance or Dichotomous
Ozone	O ₃	0.20	-	-	-	-	Chemiluminescence or UV Absorption Phoptometry
Lead	Pb	-	-	-	1.5	-	Atomic Absorption Spectrometer

4.4 Noise Standard

Standards	Method of Measurement
Maximum Sound Level (L _{max}) should not exceed 115 dB(A)	Equivalent Sound Level (L_{eq}) from Fluctuating Noise
L _{eq} 24 hour not exceeding 70 dB(A)	Equivalent Sound Level (L_{eq}) from Steady Noise

4.4.1 Noise Standards for Other Places

	Standard Value in dB(A)				
Type of Area	6.00-18.00	18.00-22.00	22.00-6.00		
Quiet areas: hospitals,					
libraries, treatment places,	50	45	40		
kindergarten and schools					
Residential areas: hotels	55	55	45		
and houses	33	33	43		
Commercial and service	70	70	50		
areas	70	70	30		
Small industrial factories	70	70	50		
located in residential areas	/0	70	30		

Article 5: Emission Standards

5.1 General Industrial Wastewater Discharge Standards

5.1.1 Standards for General Industries

No.	Parameters	Symbols	Unit	Maximum
				Concentration
1	BOD ₅	BOD_5	mg/l	40
2	Ammonia Nitrogen	NH ₃ -N	mg/l	4
3	Total Suspended Substances	TSS	mg/l	40
4	Potential of Hydrogen	pН	-	6-9.5
5	Total Dissolved Substances	TDS	mg/l	3,500
6	Phenols	C_6H_5OH	mg/l	0.3
7	Phosphorous	P	mg/l	1.0
8	Silver	Ag	mg/l	0.1
9	Zinc	Zn	mg/l	1.0
10	Sulphide	S	mg/l	1.0
11	Free Chlorine	Cl ₂	mg/l	1.0
12	Chloride	Cl ⁻	mg/l	500
13	Iron	Fe	mg/l	2.0
14	Fluoride	F	mg/l	15
15	Cyanide	CN ⁻	mg/l	0.1
16	Copper	Cu	mg/l	0.5
17	Lead	Pb	mg/l	0.2
18	Oil and Grease	-	mg/l	5
19	Nickel	Ni	mg/l	0.2
20	Mercury	Hg	mg/l	0.005
21	Manganese	Mn	mg/l	1.0
22	Arsenic	As	mg/l	0.25
23	Barium	В	mg/l	1.0
24	Cadmium	Cd	mg/l	0.03
25	Chromium	Cr ⁺⁶	mg/l	0.1
26	Total Chromium	Total Cr	mg/l	0.5

5.1.2 Sugar Cane Factories

No.	Parameters	Symbols	Unit	Maximum Concentration
1	BOD ₅	BOD_5	mg/l	60
2	Total Suspended	TSS	mg/l	100
	Substances			
3	Potential of Hydrogen	рН	-	6-9.5

5.1.3 Textiles and Garments Factories with Dyeing of Yarns

No.	Parameters	Symbols	Unit	Maximum
				Concentration
1	BOD ₅	BOD ₅	mg/l	40
2	Phenols	C ₆ H ₅ OH	mg/l	1
3	Total Suspended	TSS	mg/l	40
	Substances			
4	Potential of Hydrogen	pН	-	6-9.5

5.1.4 Pulp Products

No.	Parameters	Symbols	Unit	Maximum Concentration
1	BOD ₅	BOD ₅	mg/l	90
2	Ammonia-Nitrogen	NH ₃ -N	mg/l	7
3	Phenols	C ₆ H ₅ OH	mg/l	1
4	Total Suspended Substances	TSS	mg/l	60
5	Potential of Hydrogen	pН	-	6-9.5

5.1.5 Paper Products

No.	Parameters	Symbols	Unit	Maximum Concentration
1.	BOD ₅	BOD_5	mg/l	30
2.	Total Suspended Substances	TSS	mg/l	30
3.	Potential of Hydrogen	pН	-	6-9.5

5.1.6 Slaughtering Factories

No.	Parameters	Symbols	Unit	Maximum Concentration
1.	BOD ₅	BOD_5	mg/l	40
2.	Ammonia-Nitrogen	NH ₃ -N	mg/l	4
3.	Total Suspended	TSS	mg/l	40
	Substances			
4.	Potential of Hydrogen	pН	-	6-9.5

5.2 Standards for Specific Industries

5.2.1 Factories that Contain Organic Substances

NI	Types of Factories	Parameters					
No.		Max BOD5	Max pH	Max TSS			
1.	Canned fish	40	6-9.5	50			
2.	Beer	30	6-9.5	30			
3.	Starch	70	6-9.5	80			
4.	Tannery	40	6-9.5	40			
5.	Yarn Dyeing	40	6-9.5	40			
6.	Pharmacy	40	6-9.5	40			

5.2.2 Factories that Contain Inorganic Substances: Metal Plating

No.	Parameters	Symbols	Unit	Permitted
				Concentration
1.	Potential of Hydrogen	pН	-	6-9.5
2.	Zinc	Zn	mg/l	5.0
3.	Cyanide	CN ⁻	mg/l	0.2
4.	Total Suspended Substances	TSS	mg/l	30
5.	Chrome	Cr ⁺⁶	mg/l	0.3
6.	Total Chrome	Total Cr	mg/l	2.0
7.	Nickel	Ni	mg/l	0.2
8.	Copper	Cu	mg/l	1.0
9.	Total Heavy Metals	-	mg/l	6.0
10.	Oil and Grease	-	mg/l	30

5.2.3 Battery Producing

	out Duttery I routering								
No.	Parameters	Symbols	Unit	Permitted					
				Concentration					
1.	Lead	Pb	mg/l	0.2					
2.	Copper	Cu	mg/l	0.5					
3.	Zinc	Zn	mg/l	1					
4.	Antimony	Sb	mg/l	1					
5.	Cadmium	Cd	mg/l	0.03					
6.	Chromium	Cr	mg/l	0.5					
7.	Nickel	Ni	mg/l	1.0					
8.	Mercury	Hg	mg/l	0.005					
9.	Potential of Hydrogen	pН		6-9.5					

5.3 Effluent Standards for Pig Farms

3.3	Elliuent Standards for rig Farms								
NT.	D	Sk-1	TT*4	Max	imum Perm	itted Value			
No.	Parameters	Symbol	Unit	Standard	Standard	Method for			
				A	В	Examination			
1.	Potential of	pН	-	5.5-9	5.5-9	pH Meter			
	Hydrogen								
2.	Biochemical	BOD ₅	mg/l	60	100	Aside Modification or			
	Oxygen					Membrance Electrode			
	Demand								
3.	Chemical	COD	mg/l	300	400	Potassium			
	Oxygen		_			Dichromate			
	Demand					Digestion, Open Reflux or Closed			
						Reflux or Closed			
4.	Suspended	SS	mg/l	150	200	Glass Fibre Filter			
	Solids	55	1116/1	150	200	Disc, Dry			
	Solids					Evaporation 103-105			
						degree Celsius			
5.	Total Kjeldahl	TKN	mg/l	120	200	Kjeldahl;			
	Nitrogen					Colorimetric or			
						Ammonia Selective Electrode			
						Electione			

Standard A: 1. Large Farm is more than 400 Livestock Units (LU)

2. Medium Farm is 60-400 LU.

Standard B: 1. Small Farm is 6-<60 LU.

2. 1 LU equals 500 kg.

3. Weight of breeding pig = 170 kg/head 4. Weight of fattened pig = 60 kg/head

5. Weight of nursling pig = 12 kg/head

5.4 Gas Station Effluent Standards

No.	Parameters	Symbol	Unit	Range or	Method of			
				Maximum	Examination			
				Permitted				
				Values				
1.	Potential of	pН	-	5.5-9	pH Meter			
	Hydrogen							
2.	Chemical Oxygen	COD	mg/l	200	Potassium			
	Demand				Dichromate			
	Bemana				Digestion			
3.	Suspended Solid	SS	mg/l	60	Glass Fibre Filter			
	1				Disc			
4.	Oil and Grease	-	mg/l	15	Extract with solvent			

5.5 Wastewater Discharge Standards from the Urban Area

5.5.1 Wastewater Discharge Standards

NI.	Parameters		Standards				
No.	rarameters	Symbol	A	В	С	D	E
1.	Biochemical	BOD_5		Not	more than	n (mg/l)	
	Oxygen		30	40	50	60	200
_	Demand	~~				((1)	
2.	Suspended	SS			more than		I
	Solids		30	40	50	50	60
3.	Settle able	-		Not	more than	n (mg/l)	
	Solids		0.5	0.5	0.5	0.5	-
4.	Total Dissolved	TDS		Not	more than	n (mg/l)	
	Solids		3000	2500	2000	1500	-
5.	Chemical	COD		Not	more than	n (mg/l)	
	Oxygen		120	130	150	350	400
	Demand						
6.	Sulphide	S ²⁻		Not	more than	n (mg/l)	
			1.0	1.0	3.0	4.0	-
7.	Total Kjeldahl	TKN		Not	more than	n (mg/l)	
	Nitrogen		35	35	40	40	-
8.	Fat Oil and	-		Not	more than	n (mg/l)	
	Grease		20	20	20	20	100
9.	Temperature	t	Not more than (degree Celsius)				s)
			40	40	40	40	40
10.	Potential of	pН			Not more	than	
	Hydrogen		6-9.5	6-9.5	6-9.5	6-9.5	6-9.5

5.5.2 Classification of buildings according to the Wastewater Discharge Standards

No.	Types of Buildings	Size of Buildings	Standard
1.	Buildings	Less than 100 rooms	D
		From 101 to 500 rooms	C
		Above 501 rooms	В
2.	Hotels	Less than 60 rooms	D
		From 61 to 200 rooms	C
		Above 201 rooms	В
3.	Dormitories	From 10 to 50 rooms	D
		From 51 to 250 rooms	C
		Above 251 rooms	В
4.	Medical Centers, Hospitals,	No bed	С
	Clinic	From 1to 30 beds.	В
		Above 31 beds.	A
Class	ification of buildings per Area		
5	Residential, temple	From 5,000 to 10000 sq m	E
		Above 10001 sq m	D
6	Entertainment zone, health	From 1000 to 5000 sq m	D
	center swimming pool, Fitness Center	Above 5001 sq m	В
7	School, Educational	From 5000 to 25000 sq m	В
	institutions, College, Universities	Above 25001 sq m	A
8.	Office, enterprises, foreign and	From 5000 to 10000 sq m.	С
	private buildings, Hall	From 10001 to 55000 sq m	В
		Above 55001 sq m	A
9.	Commercial centers and	From 5000 to 25000 sq m	В
	Supermarkets	Above 25001 sq m	A
10.	Markets	From 500 to 1,000 sq m	D
		From 1001 to 1500 sq m	C
		From 1501 to 2500 sq m	В
		Above 2501 sq m	A
11	Restaurants	Less than 100 sq m	Е
		From 500 to 1000 sq m	D
		From 1001 to 1500 sq m	C
		From 1501 to 2500 sq m	В
		Above 2501 sq m	A
12	Auto service center	From 500 to 1000 sq m	D
	(Motorbike, car)	From 1,001 to 1500 sq m	C
		From 1,501 to 2500 sq m	В
		Above 2501 sq m	A
13	Terminal Stations, Airport.	From 5000 to 10000 sq m	С
	, i	From 10001 to 55000 sq m	В
		Above 55001 sq m	A
14	Slaughterhouse in City	From 500 to 1000 sq m	D
		From 1001 to 1500 sq m	C
		From 1501 to 2500 sq m	В
		Above 2501 sq m	A

5.5.3 Wastewater Treatment Standards for Public Areas

No.	Parameters	Symbol		S	tandar	ds		Method of Examination
			Α	В	С	D	Е	
1	Biochemical Oxygen	BOD ₅	20			n (mg/l)	200	Manometric method at 20
	Demand		30	40	50	60	200	Celsius for 5 consecutive days
2	Suspended Solids	Suspended solids		Not m	ore that	n (mg/l)		Evaporation at about 150
			30	40	50	50	60	Celsius during 1 hour
3	Settle able Solids	Settle able solids			ore that	n (mg/l)		Glass fibre filter disc
			0.5	0.5	0.5	0.5	-	
4	Total Dissolved	TDS			ore than	n (mg/l)		Glass fibre filter disc
	Solids		3000	2500	2000	1500	-	
5	Chemical Oxygen	COD	Not more than (mg/l)					Potassium Digestion
	Demand		120	130	150	350	400	
6	Sulphide	S^{2-}		Not m	ore than	n (mg/l)		Titration method
			1.0	1.0	3.0	4.0	-	
7	Total Kjeldahl	TKN		Not m	ore than	n (mg/l)		Kjeldahl method
	Nitrogen		35	35	40	40	-	
8	Fat Oil and Grease	Oil and Grease		Not m	ore than	n (mg/l)		Extraction by solvents and
			20	20	20	20	100	separation of the weight of fat and grease
9	Temperature	t	Not more than (degree Celsius)				Thermometer	
			40	40	40	40	40	
10	Potential of	pН		No	ot more	than		pH Meter
	Hydrogen		6-9.5	6-9.5	6-9.5	6-9.5	6-9.5	

5.5.4 Type of Public Areas for Wastewater Discharge

3.3.4	5.5.4 Type of Fublic Areas for wastewater Discharge							
Publ	Public Areas							
1	History and cultural tourism place	From 5000 to 10000 sq m	Е					
		From 10001 to 55000 sq m	D					
		Above 55001 sq m	С					
2	Public Park	From 5000 to 10000 sq m	С					
		From 10001 to 55000 sq m	В					
		Above 55001	A					
3	Amusement Park	From 5000 to 10000 sq m	С					
		From 10001 to 55000 sq m	В					
		Above 55001 sq m	A					
4	Water Park	From 5000 to 10000 sq m	С					
		From 10001 to 55000 sq m	В					
		above 55001 sq m	A					
5	Marsh, Pond	From 5000 to 10000 sq m	С					
		From 10001 to 55000 sq m	В					
		Above 55001	A					
6	Main water drainage, second water	From 5000 to 10000 sq m	С					
	drainage, water drainage along the	From 10001 to 55000 sq m	В					
	road	Above 55001 sq m	A					

5.6 Air Emission Standards for Industrial Factories

5.6.1 Air Emission Standards for Industrial Factories

No.	Parameters	Type of Factories	Emission Limits
1.	Ammonia and ammonium	Trade, Industrial or	76 mg/Nm ³
	compounds	producing process	
2.	Antimony and its compounds	Trade, Industrial or	5 mg/Nm ³
		producing process	
3.	Arsenic and its compounds	Trade, Industrial or	1 mg/Nm^3
		producing process	
4.	Benzene	Trade, Industrial or	5 mg/Nm ³
		producing process	
5.	Cadmium and its compounds	Trade, Industrial or	3 mg/Nm^3
		producing process	
6.	Carbon monoxide	Trade, Industrial or	625 mg/Nm ³
		producing process	
7.	Chlorine	Trade, Industrial or	32 mg/Nm^3
		producing process	
8.	Copper and its compounds	Trade, Industrial or	5 mg/Nm ³
		producing process	
9.	Dioxins and furans	Fuel burning equipment or	1.0 mg/TEZ/Nm ³
		wood industry	
10.	Ethylene Oxide	Trade, Industrial or	5 mg/Nm ³
		producing process	
11.	Fluorine, hydrofluoric acid or	Trade, Industrial or	50 mg/Nm^3
	inorganic fluorine compounds	producing process	_
12.	Formaldehyde	Trade, Industrial or	20 mg/Nm^3
		producing process	

No.	Parameters	Type of Factories	Emission Limits
13.	Hydrogen Chloride	Trade, Industrial or producing process	200 mg/Nm ³
14.	Hydrogen Sulphide	Trade, Industrial or producing process	7.6 mg/Nm ³
15.	Lead and its compounds	Trade, Industrial or producing process	5 mg/Nm ³
16.	Mercury and its compounds	Trade, Industrial or producing process	3 mg/Nm ³
17.	Oxides of nitrogen	Trade, Industrial, producing process, fuel burning equipment or wood industry	700 mg/Nm ³ Material
18.	Particulate substances	Trade, industrial, producing process, fuel burning equipment or wood industry	I. 100 mg/Nm ³ II. 100 mg/Nm ³ 200 mg/Nm ³
19.	Smoke	Fuel burning equipment or wood industry	Rangeland No.1 or equivalent opacity
20.	Styrene monomer	Trade, Industrial or producing process	100 mg/Nm ³
21.	Sulphur dioxide	Trade, Industrial or producing process	500 mg/Nm ³
22.	Sulphur dioxide and other acid greases	Fuel burning equipment or wood industry	500 mg/Nm ³
23.	Sulphur dioxide or Sulphuric acid mist	Trade, Industrial, producing process, fuel burning equipment or wood industry	100 mg/Nm ³
24.	Vinyl chloride monomer	Trade, Industrial or producing process	20 mg/Nm ³

5.6.2 Air Emission Standards for Cement Factories

	Permitted Air Emission Standard Value			
Type of Cement Factory	Particulate matter (mg/m³)	Sulphur dioxide (ppm)	Dioxide of Nitrogen calculated in the form or Nitrogen dioxide (ppm)	
Existing cement				
factories emitted air				
pollution				
(a) General cement burning plant	Not more than 300	Not more than 50	Not more than 600	
(b) White cement burning plant	Not more than 300	Not more than 600	Not more than 600	
(c) Cooling plant, cement crushing and coal crushing	Not more than 200	-	-	
plant				

	Permitted Air Emission Standard Value			
Type of Cement Factory	Particulate matter (mg/m³)	Sulphur dioxide (ppm)	Dioxide of Nitrogen calculated in the form or Nitrogen dioxide (ppm)	
New cement factories				
emitted air pollution				
(a) General cement burning plant	Not more than 120	Not more than 50	Not more than 500	
(b) White cement burning plant	Not more than 120	Not more than 500	Not more than 500	
(c) Cooling plant, cement crushing	Not more than 120	-	-	
and coal crushing				
plant				

5.6.3 Air Emission Standard for Power Plants

No.	Type of Substances or pollutant	Source	Permitted Emission Value	
		Coal or Gas Power Plant	ppm	mg/m ³
		1. With the capacity of not	640	-
1	Sulphur dioxide	more than 300 MW.		
		2. With the capacity above 300 MW, not more than 500 MW	450	-
		3. With the capacity above 500 MW	320	-
2	Sulphur dioxide	Natural Gas Power Plant	20	-
3		Power Plant Generating Electric	ity From:	
3	Oxide of Nitrogen	1. Coal	350	-
		2. Fuel	180	-
		3. Natural Gas	120	-
		Power Plant Generating Electric	ity From:	
4	Particulate	1. Coal	-	120
	Substances	2. Fuel	-	120
		3. Natural Gas	-	60

5.6.4 Pollution Emission Standard for Iron Factory

	Permitted Air Emission Standard Value				
Type of cement factories	Dioxide of Nitrogen calculated in the form or Nitrogen dioxide (ppm)	Sulphur dioxide (ppm)	Dust (mg/m³)		
New Sources	800	180	120		
Existing Sources	800	200	240		

5.7 Air Emission Standards in the Workplace 5.7.1 Chemical Concentration in the Workplace

No.	Parameters Parameters	Symbols	Chemical
			Concentration
			mg/m ³
1	Aldrin	Aldrin	0.25
2	Azinphos-methyl	Azinphos-methyl	0.2
3	Chlordane	Chlordane	0.5
4	DDT	DDT	1
5	DDVP	DDVP	1
6	Dichlorvos	Dichlorvos	1
7	Dieldrin	Dieldrin	0.25
8	Dimethyl 1.2-dibromo	Dimethyl 1,2-dibromo	3
	2.2dichloroethyl phosphate	2,2dichloroethyl phosphate	
	(Dibrom)	(Dibrom)	
9	Endrin	Endrin	0.1
10	Guthion	Guthion	0.2
11	Lead asenate	Lead asenate	0.15
12	Lindane	Lindane	0.5
13	Melathion	Malathion	15
14	Methoxychlor	Methoxychlor	15
15	Nicotine	Nicotine	0.5
16	Systox	Systox	0.1
17	Thalium (soluble compounds)	Thalium (soluble compounds)	0.1
		as Ti	
18	Thiram	Thiram	5
19	Toxaphene	Toxaphene	0.5
20	Parathion	Parathion	0.11
21	Phosdrin	Phosdrin	0.1
22	Pyrethum	Pyrethum	5
23	Warfarin	Warfarin	0.1
24	Carbaryl (sevin (R))	Carbaryl (sevin (R))	5
25	2.4-D	2,4-D	10
26	Paraquat	Paraquat	0.5
27	2.4.5-T	2,4,5-T	10
28	Acetic Acid	CH ₃ -COOH	25
29	Ammonia	NH ₃	35
30	Arsenic and its compounds	As and its compounds	0.5
31	Arsine	Arsine	0.2

32	Biphenyl	Biphenyl	1
33	Bisphenol	Bisphenol	2.8
34	Carbon dioxide	CO_2	9,000
35	Carbon monoxide	CO	55
36	Chlorine	Cl ₂	3
37	Chlorine dioxide	ClO ₂	0.3
38	Chromium and its compounds	Cr and its compounds	1
39	Copper fume	Copper fume	0.1
40	Dust or mist of copper	Dust or mist of copper	1
41	Cotton dust (raw)	Cotton dust (raw)	1
42	Cyanide	CN ⁻	5
43	Ethyl alcohol	C ₂ H ₅ OH	1,900
44	Fluoride	F ⁻	2.5
45	Fluorine	F ₂	0.2
46	Hydrogen cyanide	HCN	11
47	Iron oxide fume	Iron oxide fume	10
48	Methyl alcohol	CH ₃ OH	260
49	Nikel carbonyl	Nikel carbonyl	0.007
50	Nickel, metal and soluble	Ni, Metal and soluble	1
	compounds	compounds as Ni	
51	Nitric acid	HNO ₃	5
52	Nitric oxide	Nitric oxide NO _x	30
53	Nitrogen dioxide	NO ₂	9
54	Nitrogylcerin	Nitroglycerin	2
55	Sodium hydroxide	NaOH	2
56	Sulphur dioxide	SO ₂	13
57	Sulphuric acid	H ₂ SO ₄	1
58	Tetraethyl Lead	Tetra ethyl Lead (as Pb)	0.075
59	Tetra methyl Lead	Tetra methyl Lead(as Pb)	0.07
60	Tin and Inorganic compounds of tin	Tin and Inorganic compounds of Tin	2
61	Tin and Organic compounds of tin	Tin and Organic compounds of Tin	0.1
62	Phenol	C ₆ H ₅ OH	19
63	Phosgene (Carbonyl chloride)	Phosgene (Carbonyl chloride)	0.4
64	Phosphine	Phosphine	0.4
65	Posphoric acid	H ₃ PO ₄	1
66	Phosphorus (yellow)	P (yellow)	0.1
67	Phosphorus pentachloride	P-Cl ₅	1
68	Phosphorus pentasulfide	P-(SO ₄) ₅	1
69	Phosphorus	P	3
70	Xylene	Xylene	435
71	Zinc chloride fume	ZnCl ₂	1
72	Zinc oxide fume	ZnO	5

5.7.2 Atmospheric Chemical Substance Concentration in the Workplace

3.7.2	Atmospheric Chemical Substance Concentration in the Workplace				
No.	Parameters Symbols		Chemical		
			Concentration		
			mg/m ³		
1.	Ally glycidyl ether	AGE	45		
2.	Boron trifluoride	Boron trifluoride	3		
3.	Butylamine	Butylamine	15		
4.	Tert-Butyl chromate	Tert-Butyl chromate (as CrO ₃)	0.1		
5.	Chlorine trifluoride	Chlorine trifluoride	0.4		
6.	Chloroacetaldehyde	Chloroacetaldehyde	3		
7.	Chroroform	Chroroform (trichloromethane)	240		
	(trichloromethane)	Chloroform			
8.	o-Dichlorobenzen	o –Dichlorobenzen	300		
9.	Dichloethyl ether	Dichloethyl ether	90		
10.	1.1-Dichloro-1-nitroethane	1,1-Dichloro-1-nitroethane	60		
11.	Diglycidyl ether	Diglycidyl ether (DGE)	2.8		
12.	Ethyl mercaptan	Ethyl mercaptan	25		
13.	Ehylene mercol glycol	Ethylene mercol glycol	1		
	dinitrate and/or Nitroglycerin	dinitrate and /or Nitroglycerin			
14.	Hydrogen chloride	Hydrogen chloride	7		
15.	Iodine	Iodine	1		
16.	Manganese	Manganese	5		
17.	Methyl bromide	Methyl bromide	80		
18.	Methyl mercaptan	Methyl mercaptan	20		
19.	α-Methyl styrene	∝-Methyl styrene	480		
20.	Methylene bisphenyl	Methylene bisphenyl	0.2		
	isocyanate	isocyanate			
21.	Monomethyl hydrazine	Monomethyl hydrazine	0.35		
22.	Terphenyls	Terphenyls	9		
23.	Toluene-2.4-Diisocyanate	Toluene-2,4-Diisocyanate	0.14		
24.	Vinyl chloride	Vinyl chloride	2.8		

5.7.3 Atmospheric Chemical Substance Concentration in the Workplace

		Average Concentration	Concentration for a Specified Time		Permitted
No.	Materials	during normal Work Period	Concentration	Permitted Exposure Period	Concentration Value
1	Benzene	10 ppm	50 ppm	10 min	25 ppm
2	Beryllium and its compounds	2 mg/m ³	25 mg/m ³	30 min	5 mg/m ³
3	Cadmium fume	0.1 mg/m^3	-	-	0.3 mg/m^3
4	Cadmium dust	0.2 mg/m^3	-	-	0.6 mg/m^3
5	Carbondisulfide	20 ppm	100 ppm	30 min	30 ppm
6	Carbontetrachloride	10 ppm	200 ppm	5 min in	25 ppm

		Average Concentration for a Specified Time			Permitted
No.	Materials	during normal Work Period	Concentration	Permitted Exposure Period	Concentration Value
				any 4 hours	
7	Ethylene dibromide	20 ppm	50 ppm	5 min	30 ppm
8	Ethylene dichloride	50 ppm	200 ppm	5 min in any 3 hours	100 ppm
9	Formaldehyde	3 ppm	10 ppm	30 min	5 ppm
10	Fluoride as dust	2.5 mg/m ³	-	-	-
11	Lead and its inorganic compounds	0.2 mg/m ³	-	-	-
12	Methyl chloride	100 ppm	300 ppm	5 min in any 3 hours	200 ppm
13	Methyl chloride	500 ppm	2000 ppm	5 min in any 2 hours	1000 ppm
14	Organo mercury	0.01 mg/m ³	-	-	0.04 mg/m ³
15	Styrene	100 ppm	600 ppm	5 min in any 3 hours	200 ppm
16	Trichloro ethylene	100 ppm	300 ppm	5 min in any 2 hours	200 ppm
17	Tetrachloro ethylene	100 ppm	300 ppm	5 min in any 3 hours	200 ppm
18	Toluene	200 ppm	500 ppm	10 min	300 ppm
19	Hydrogen Sulfide	-	50 ppm	10 min	20 ppm
20	Mercury	-	-	-	0.05 mg/m ³
21	Chromic acid and chromate salt	-	-	-	0.1 mg/m ³

5.8 Emission Standards from Mobile Sources

5.8.1 Emission Standards for New Vehicles

Type of vehicle	Standard Values				
New public transport and light vehicles	Particulate Matters (PM) (mg/km)	Nitrogen Oxide (NOx) (mg/km)	Hydrocarbon (HC) (mg/km)	Carbon Monoxide (mg/km)	
Benzene Engine Vehicle	-	150	200	2,300	
Diesel Engine Vehicle	50	500	-	640	

5.8.2 Emission Standard for Used Motor Vehicles (Motorcycles)

Pollutants	Standards	Equipment	Methods of Measurement
Carbon monoxide (CO) Hydrocarbon (HC)	4.5% 10,000 ppm	Non-dispersive Infrared Detection	Measure while parking the motorcycle at idle and no load
White Smoke	30%	Smoke Meter, Full Flow Opacity System	Measure while parking the motorcycle at idle and no load by quid acceleration the engine to 75% of maximum power rpm

5.8.3 Emission Standards for Used Motor Vehicles (Benzene Vehicles)

	Pollutants	Standard		Method of
Туре	Carbon monoxide CO (%)	Hydrocarbon HC (ppm)	Equipment	Measurement
Benzene Vehicle	4.5	600	Non-Dispersive Infrared Detection	Measure while parking the car at idle and no load

5.8.4 Emission Standards for Used Motor Vehicles (Diesel Vehicles)

Туре	Smoke SHU	Equipment	Method of Measurement
	50%	Filter System	Measure while parking the car at load
Diesel Vehicle	45%	System Opacity	by quick acceleration the engine to maximum rpm
	40%	Filter System	Measure while the car running steady
	35%	System Opacity	on the roller at 60% of maximum power rpm

5.9 Noise Pollution Standards

5.9.1 Noise Standards for Motor Boats

Standards	Method of Measurement
100 dB(A) at 5 meters from the boat's	Diesel engines; accelerate until the engine
exhaust pipe	reaches its highest rounds per minute.
Conduct the test twice and use the highest	
standard measured. If the difference is higher	Benzene engine; accelerate to 3/4 of the
than 2 dB(A), perform the test again	maximum round

5.9.2 Noise Standards for Vehicles

Type of Vehicles	Standards	Method of Measurement	
Diesel vehicle	Measured at 7.5 meters: not exceeding 85 dB(A) Measured at 0.5 meters: not exceeding 100 dB(A)	Accelerate until the engine reaches maximum speed.	
Benzene vehicle	Car used in ways while it stays still and its engine is running without sound of horn	Measuring while parking the car at no load by acceleration the engine to 3/4 of maximum rpm.	

5.9.3 Noise Standards for Motorcycles

5.9.5 Indise Standards for Motor cycles	
Standards	Methods of Measurement
Measured at 0.5 meters: not exceeding 95 dB(A) for a car used in ways, while it stays still and its engine is running without sound of horn	The engine shall be accelerated to be at 3/4 of the maximum rounds if the engine has the maximum rounds of not more than 5000 rpm. The engine shall be accelerated to be at 1/2 of the maximum rounds if the engine has the maximum rounds of more than 5000 rpm.

Chapter III

Organizations Responsible for the Implementation and Monitoring of the National Environmental Standards

Article 6: Implementation Responsible Organizations

The implementation responsible organization is divided into two levels as follows:

- 6.1 Central Level; and
- 6.2 Provincial Level.

Article 7: Central Level Organizations

Central level organizations include the following:

- 7.1 Department of Environment, Water Resources and Environmental Administration (WREA)
- 7.2 Department of Water Resources, Water Resources and Environmental Administration (WREA)
- 7.3 Environmental and Social Impact Assessment Department, Water Resources and Environmental Administration (WREA)
- 7.4 Water and Environment Research Institute, Water Resources and Environmental Administration (WREA)
- 7.5 Other sectors at central level.

Article 8: Rights and Duties of Central Level Organizations

8.1 Department of Environment

Department of Environment, Water Resources and Environmental Administration shall be a focal point for coordination with other relevant divisions and local authorities to implement the administration and monitoring activities of this Agreement throughout the country.

8.2 Water and Environment Research Institute

Water and Environment Research Institute shall have the responsibilities to conduct further research, monitor, analyze and provide other services in relation to water and environmental quality throughout the country.

8.3 Department of Water Resources

Department of Water Resources shall have the responsibility to coordinate with other authorities to conduct surveys, and evaluate and monitor the quantity, quality and utilization of surface water and groundwater.

8.4 Environmental and Social Impact Assessment Department

The Environmental and Social Impact Assessment Department shall have the responsibility to review, monitor and evaluate the implementation of Environmental and Social Management and Monitoring Plans of each state or private investment project.

8.5 Other Sectors at Central Level

Other sectors at central level have duty of responsible to monitor and review the technical standards related to its responsibility in order to ensure the implementation of this Environmental Standard.

Article 9: Implementing Organization at Provincial Level

The implementing organizations at provincial level include:

- 10.1 Water Resources and Environment Offices in Vientiane Capital and all provinces; and
- 10.2 Other divisions at provincial level.

Article 10: Rights and Duties of Provincial Level Organizations

- 10.1 Water Resources and Environmental Office in Vientiane Capital and all provinces shall be a focal point to coordinate with other divisions and other local authorities to implement the administration and monitoring activities in respect of environment within their authority and jurisdiction.
- 10.2 Other sectors at provincial have duty of responsible to monitor and review the technical standards related to its responsibility in order to ensure the implementation of the National Environmental Standards.

Chapter IV

Rewards and Sanctions

Article 11: Rewards

The Individuals, consumers, producers and other related organizations that facilitate or provide any services in good compliance with this agreement will be commended and will receive the compliment certificate from Water Resources and Environmental Administration.

Article 12: Sanctions

Individuals, consumers, producers and other related organizations violating the provision of this agreement will be warned, be fined or subject to criminal punishment, depending on the severity of the violation.

Chapter V Final Provisions

Article 13: Dissemination

Department of Environment shall have the duty to coordinate with other relevant organizations from the central level to the local level in order to disseminate this Agreement.

Other related organizations can research and issue additional specific standards subject to consultation and agreement with WREA.

Article 14: Implementation

Offices, departments, institutions, other sectors in central level and local authority shall acknowledge and perform strictly in compliance with this agreement.

Article 15: Effective

This agreement is affective since its promulgation, every term and provisions inconsistent with this agreement are hereby terminated.

Minister to Prime Minister's Office Head of Water Resources and Environmental Administration

Khempheng Pholsena